15. Landslide susceptibility mapping by using frequency ratio method and machine learning models: A case study of Phin Ngan commune, Lao Cai province, Vietnam

Hiển Đỗ Minh, Hoàng Nguyễn Văn, Dũng Mai Lê, Hương Ngô Thị, Dũng Lương Hữu, Phong Nguyễn Bình


Landslide susceptibility assessment in Phin Ngan commune, Lao Cai province, Vietnam has been carried out by applying three machine learning (ML) models (Logistic Regression - LR, Bayesian Network - BN and Support Vector Machines - SVM), and the Frequency Ratio (FR) method. First, FR was applied to calculate the weighting values of each parameter classes in the factor maps. Second, ML models were applied to calculate the importance of each landslide related factor map. Then, the landslide susceptibility index (LSI) maps were generated by combining the importance values of factor maps obtained from ML models and the parameter classes that was assigned the weighting values of factor maps created by FR model. Next, the performance of these ML methods has been evaluated using receiver operating characteristic (ROC) curve and area under the curve (AUC). Analysis and comparison of the results showed that all three ML models performed well for landslide susceptibility assessment (AUC = 87.2 % - 97.5 %). The BN model (AUC = 97.5 %) showed the best performance in comparison to other landslide models (LR model: AUC = 94.6 % and the SVM model: AUC = 87.2 %). The results indicated that the models have given outputs with good forecasting ability. They are also very useful in supporting land - use planning, the prevention and mitigation of risks due to landslides in the research area.

Full text article

Generated from XML file


[1]. Aleotti P, Chowdhury R. (1999). Landslide hazard assessment: Summary review and new perspectives. Bull Eng Geol Environ, 58(1):21 - 44. https://doi.org/10.1007/s100640050066.
[2]. Beven K, Kirkby M. (1979). Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant (A physically based, variable contributing area model of basin hydrology). Hydrol. Sci. J, 24, 43-69.
[3]. Binh PT, Pradhan B, Bui TD, Prakash I, Dholakia MB. (2016). A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environmental modelling & software, 84, 240-250. https://doi.org/10.1016/j.envsoft.2016.07.005.
[4]. Binh PT, Pradhan B, Dieu BT. (2018). Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees. Geomorphology, 303, 256-270. https://doi.org/10.1016/j.geomorph.2017.12.008.
[5]. Binh PT, Thoi NT, Qi CC, Phong TV, DouJ, Lanh HS, Hiep LV, Prakash I. (2020). Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena, 195, 104805. https://doi.org/10.1016/j.catena.2020.104805.
¬[6]. Burrough PA and Mc Donnell RA. (1998). Principles of Geographical Information Systems. Oxford, Oxford University Press, 330 pp.
[7]. Chen T, Niu, RQ, Jia XP. (2016). A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environ Earth Sci 75: 867. http://dx.doi.org/10.1007/s12665-016-5317-y.
[8]. Cherkassky V, Mulier F. (2007). Learning from data: Concepts, theory and methods. Wiley, New York.
[9]. Choi JW, Oh HJ, Lee HJ, Lee CW, Lee S. (2012). Combining landslide susceptibility maps obtained from frequency ratio, logistic regression and artificial neural network models using ASTER images and GIS. Engineering Geology 124: 12-23. Doi: 10.1016/j.enggeo.2011.09.011.
[10]. Chung CJF, Fabbri AG. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards 30: 451 - 472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b.
[11]. Corominas J, Westen CV, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT. (2014). Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ, 73, 209 - 263. https://doi.org/10.1007/s10064-013-0538-8.
[12]. Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P. (2008a). Predictive modeling of rainfall - induced landslide hazard in the Lesser Himalaya of Nepal based on weights of evidence. Geomorphology 102: 496-510. http://dx.doi.org/10.1016/j.geo-morph.2008.05.041.
[13]. Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K. (2008b). GIS - based weights of evidence modeling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ Geol 54: 311-324. http://dx.doi.org/10.1007/s00254-007-0818-3.
[14]. Dai FC, Lee CF, Li J, Xu ZW. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology 40 (3): 381-391. Doi: 10.1007/s002540000163.
[15]. Dieu BT, Binh PT, Nguyen QP, Hoang ND. (2016). Spatial prediction of rainfall - induced shallow landslides using hybrid integration approach of least - squares, support vector machines and differential evolution optimization: A case study in Central Vietnam. Int. J. Digital Earth, 1-21. https://doi.org/10.1080/17538947.2016.1169561.
[16]. Dieu BT, Shahabi H, Shirzadi A, Chapi K, Pradhan B, Chen W, Khosravi K, Panahi M, Ahmad BB, Saro L. (2018). Land subsidence susceptibility mapping in South Korea using machine learning algorithms. Sensors, 18, 2464. Doi:10.3390/s1808246.
[17]. Dieu TB, Pradhan B, Lofman O, Revhaug I, Dick OB. (2012a). Spatial prediction of landslide hazards in Hoabinh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96: 28-40. https://doi.org/10.1016/j.catena.2012.04.001.
[18]. Dieu TB, Pradhan B, Lofman O, Revhaug I., Dick OB. (2012b). Landslide susceptibility assessment in the Hoabinh province of Vietnam: A comparison of the levenberg - marquardt and Bayesian regularized neural networks. Geomorphology 171-172: 12-29. https://doi.org/10.1016/j.geomorph.2012.04.023.
[19]. Dixon B, Candade N. (2008). Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? Int. J. Remote Sens, 29 (4), 1185-1206. https://doi.org/10.1080/01431160701294661.
[20]. Ermini L, Catani F, Casagli N. (2005). Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66:327-343. Doi: 10.1016/j.geomorph.2004.09.025.
[21]. Friedman N, Geiger D, Goldszmidt M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163. https://doi.org/10.1023/A:1007465528199.
[22]. Goetz JN, Brenning A, Petschko H, Leopold P. (2015). Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci, https://doi.org/10.1016/j.cageo.2015.04.007.
[23]. Hien M.D, Yin KL, Guo ZZ. (2020). A comparative study on the integrative ability of the analytical hierarchy process, weights of evidence and logistic regression methods with the Flow - R model for landslide susceptibility assessment. Geomatics, Natural Hazard and Risk, Vol 11, No 1, 2449-2485. https://doi.org/10.1080/19475705.2020.1846086.
[24]. Hong HY, Pourghasemi HR, Pourtaghi ZS. (2016). Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 259: 105-118. http://dx.doi.org/10.1016/j.geomorph.2016.02.012.
[25]. Hong HY, Pradhan B, Xu C, Dieu TB. (2015). Spatial prediction of landslide hazard at the Yihuang area (China) using two - class kernel logistic regression, alternating decision tree and support vector machines. Catena 133: 266-281. http://dx.doi.org/10.1016/j.catena.2015.05.019.
[26]. Huang Y, Zhao L. (2018). Review on landslide susceptibility mapping using support vector machines. Catena, https://doi.org/10.1016/j.catena.2018.03.003.
[27]. Hung LQ, Van NTH, Duc MD, Ha LTC, Son PV, Khanh NH, Binh LT. (2016). Landslide susceptibility mapping by combining the analytical hierarchy process and weighted linear combination methods: A case study in the upper Lo River catchment (Vietnam). Landslides, 13:1285-1301. Doi 10.1007/s10346-015-0657-3.
[28]. Kavzoglu T, Sahin EK, Colkesen I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines and logistic regression. Landslides11: 425-439. https://doi.org/10.1007/s10346-013-0391-7.
[29]. Kayastha P, Dhital MR, Smedt FDe. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences 52, 398-408. http://dx.doi.org/10.1016/j.cageo.2012.11.003.
[30]. Lee S, Min K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korean. Environ Geol. 40:1095-113. https://doi.org/10.1007/s002540100310.
[31]. Lee S, Pradhan B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4: 33-41. Doi:10.1007/s10346-006-0047-y.
[32]. Lee S, Sambath T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50, 847-855. Doi:10.1007/s00254-006-0256-7.
[33]. Leroi E. (1996). Landslide hazard - risk maps at different scales: Objectives, tools and developments. In: Proc VII Int Symp Landslides, Trondheim, 1: 35-52. Doi: 10.12691/jgg-5-4-2.
[34]. Long NT, De Smedt F. (2019). Analysis and mapping of rainfall - induced landslide susceptibility in A Luoi district, Thua Thien Hue Province, Vietnam. Water-MDPI, 11, 51. Doi:10.3390/w11010051.
[35]. Long NT, Smedt FDe. (2012). Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien Hue Province, Vietnam. Environ Earth Sci 66: 1739-1752. http://dx.doi.org/10.1007/s12665-011-1397-x.
[36]. Marrcot BG, Steventon JD, Sutheland GD, McCann RK. (2006). Guidelines for developing and updating Bayesian belief networks applied to eological modeling and conservation. Can.J. For. Res, 36 (12), 3063-3074. https://doi.org/10.1139/x06-135.
[37]. Mengistu F, Suryabhagavan KV, Raghuvanshi TK, Lewi E. (2019). Landslide hazard zonation and slope instability assessment using optical and InSAR data: A case study from Gidole town and its surrounding areas, southern Ethiopia. Remote Sensing of Land, 3(1):1 - 14. Doi:10.21523/gcj1.19030101.
[38]. Moguerza JM, Munoz A. (2006). Support vector machines with applications. Stat Sci, 21:322-336. doi:10. 1214/088342306000000493.
[39]. Mohammady M, Pourghasemi HR, Pradhan B. (2012). Landslide susceptibility mapping at Golestan province, Iran: A comparison between frequency ratio, Dempster - Shafer and weights of evidence models. Journal of Asian Earth Sciences 61: 221-236. http://dx.doi.org/10.1016/j.jseaes.2012.10.005.
[40]. Moore ID, Burch GJ. (1986). Physical basis of the length - slope factor in the universal soil loss equation. Soil Sci Soc Am J, 50(5):1294-1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x.
[41]. Nefeslioglu HA, Gokceoglu C, Sonmez H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol, 97(3-4):171-91. https://doi.org/10.1016/j.enggeo.2008.01.004.
[42]. Oh HJ, Lee S, Soedradjat GM. (2010). Quantitative landslide susceptibility mapping at Pemalang area, Indonesia. Environmental Earth Sciences, 60(6):1317-1328. https://doi.org/10.1007/s12665-009-0272-5.
[43]. Pearl J. (2014). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.
[44]. Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR. (2013a). Application of weights of evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci 6: 2351-2365. http://dx.doi.org/10.1007/s12517-012-0532-7.
[45]. Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C. (2013b). Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran. J. Earth Syst. Sci 122, No 2: 349-369. Doi: 10.1007/s12040-013-0282-2.
[46]. Pourghasemi HR, Moradi HR, Fatemi Aghda SM, Gokceoglu C, Pradhan B. (2014). GIS - based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab J Geosci 7: 1857-1878. http://dx.doi.org/10.1007/s12517-012-0825-x.
[47]. Pradhan AMS, Kang HS, Lee S, Kim YT. (2016). Spatial model integration for shallow landslide susceptibility and its runout using a GIS - based approach in Yongin. Geocarto Int. Doi:10. 1080/10106049.2016.1155658.
[48]. Pradhan AMS, Kim YT. (2014). Relative effect method of landslide susceptibility zonation in weathered granite soil: A case study in Deokjeok-ri Creek, South Korea. Nat hazards 72: 1189-1217. http://dx. doi.org/10.1007/s11069-014-1065-z.
[49]. Pradhan AMS, KimYT. (2017). Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea. Bull Eng Geol Environ 76: 1263-1279. http://dx.doi.org/10.1007/s10064-016-0919-x.
[50]. Pradhan B, Abokharima MH, Jebur MN, Tehrany MS. (2014). Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat hazards, 73: 1019-1042. Doi 10.1007/s11069-014-1128-1.
[51]. Pradhan B, Lee S. (2009). Landslide risk analysis using artificial neural network model focussing on different training sites. Int J PhysSci, 4:001-015. https://doi.org/10.5897/IJPS.9000343.
[52]. Pradhan B, Lee S. (2010a). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression and artificial neural network models. Environmental Earth Sciences, 60(5):1037-1054. https://doi.org/10.1007/s12665-009-0245-8.
[53]. Pradhan B, Lee S. (2010b). Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ ModellSoftw, 25:747-59. Doi: 10.1016/j.envsoft.2009.10.016.
[54]. Pradhan B. (2011). Manifestation of an advanced fuzzy logic model coupled with Geo - information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environ Ecol Stat 18: 471-493. http://dx.doi.org/10.1007/s10651-010-0147-7.
[55]. Pradhan B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro - fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences 51: 350-365. http://dx.doi.org/10.1016/j.cageo.2012.08.023.
[56]. Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A. (2014). Application of frequency ratio, statistical index and weights of evidence models and their comparison in landslide susceptibility mapping in central Nepal Himalaya. Arab J Geosci 7: 725-742. http://dx.doi.org/10.1007/s12517-012-0807-z.
[57]. Regmi NR, Giardino JR, Vitek JD. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Westen Colorado, USA. Geomorphology 115: 172-187. http://dx.doi.org/10.1016/j.geomorph.2009.10.002.
[58]. Schölkopf B, Smola A. (2002). Learning with kernels: Support vectormachines, regularization, optimization and beyond. MIT Press, Cambridge.
[59]. Song Y, Gong J, Gao S, Wang D, Cui T, Li Y, Wei B. (2012). Susceptibility assessment of earthquake-induced landslides using Bayesian network: A case study in Beichuan, China. Comput. Geosci, 42 (0), 189-199. https://doi.org/10.1016/j.cageo.2011.09.011.
[60]. Sujatha ER and Rajamanickam G.V. (2015). Landslide hazard and risk mapping using weighted linear combination applied to Tevankarai sream watershed, Kodaikkanal, India. Human and Ecological Risk Assessment: An International Journal. 21(6): 1445-1461. http://dx.doi.org/10.1007/s10064-013-0537-9.
[61]. Suykens JA, Vandewalle J. (1999). Least squares support vector machine classifiers. Neural Process. Lett, 9 (3), 293-300. https://doi.org/10.1023/A:1018628609742.
[62]. Talaei R. (2014). Landslide susceptibility zonation mapping using logistic regression and its validation in Hashtchin region, Northwest of Iran. Journal Geological Society of India, 84: 68 - 86. https://doi.org/10.1007/s12594-014-0111-5.
[63]. Van Westen CJ, Terlien MTJ. (1996). An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes and Landforms 21, 853 - 868. https://doi.org/10.1002/(SICI)1096-9837(19609)21:9<853:AID-ESP676>3.0.CO;2-C.
[64]. Vapnik VN. (1999). The Nature of statistical learning theory. 2nd ed. Springer, New York.
[65]. Wang QQ, Li WP, Xing ML, Wu YL, Pei YB, Yang DD, Bai HY. (2016). Landslide susceptibility mapping at Gongliu county, China using artificial neural network and weight of evidence models. Geosciences Journal, vol 20. No 5: 705-718. http://dx.doi.org/10.1007/s12303-016-0003-3.
[66]. Wu ZY, Wu YL, Yang YT, Chen FW, Zhang N, Ke YT. (2017). A comparative study on the landslide susceptibility mapping using logistic regression and statistical index models. Arab J Geosci, 10: 187. http://dx.doi.org/10.1007/s12517-017-2961-9.
[67]. Xu C, Xu X, Dai FC, Xiao JZ, Tan XB, Yuan RM. (2012). Landslide hazard mapping using GIS and weight of evidence model in Qingshui river watershed of 2008 Wenchuan earthquake struck region. Journal of Earth Science, vol 23. No 1: 97-120. http://dx.doi.org/10.1007/s12583-012-0236-7.
[68]. Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T. (2011). A GIS - based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85: 274-287. http://dx.doi.org/10.1016/j.catena.2011.01.014.
[69]. Yesilnacar E, Topal T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology 79: 251-266. http://dx.doi.org/10.1016/j.enggeo.2005.02.002.
[70]. Yilmaz I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat - Turkey). Comput Geosci, 35:1125-1138. https://doi.org/10.1016/j.cageo.2008.08.007
[71]. Yilmaz I. (2010). Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks and support vector machine. Environmental Earth Sciences, 61(4):821-836. Doi: 10.1007/s12665-009-0394-9.
[72]. Zezere JL, Pereira S, Melo R, Oliveira SC, Garcia RAC. (2017). Mapping landslide susceptibility using data - driven methods. Science of the Total Environment 589: 250 - 267. https://doi.org/ 10.1016/j.scitotenv.2017.02.188.
[73]. Zhang GF, Cai YX, Zheng Z, Zhen JW, Liu YL, Huang KY. (2016). Integration of the statistical index method and the analytic hierarchy process technique for the assessment of landslide susceptibility in Huizhou, China. Catena 142: 233-244. http://dx.doi.org/10.1016/j.catena.2016.03.028.


Hiển Đỗ Minh
hien_dm@yahoo.com (Primary Contact)
Hoàng Nguyễn Văn
Dũng Mai Lê
Hương Ngô Thị
Dũng Lương Hữu
Phong Nguyễn Bình
Đỗ Minh, H., Nguyễn Văn, H., Mai Lê, D., Ngô Thị, H., Lương Hữu, D., & Nguyễn Bình, P. (2022). 15. Landslide susceptibility mapping by using frequency ratio method and machine learning models: A case study of Phin Ngan commune, Lao Cai province, Vietnam. Science Journal of Natural Resources and Environment, (42), 150–166. Retrieved from https://tapchikhtnmt.hunre.edu.vn/index.php/tapchikhtnmt/article/view/439

Article Details

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.


Minh Nguyen Quang, Thanh Phi Truong, Tuan Do Manh, Truong Tran Xuan, Kien Le Trung, Thanh Nguyen...
Abstract View : 19
Download :5

15. Feng shui and land administration

Tuân Lê Cảnh, Hồng Đào Mạnh
Abstract View : 31
Download :4