02. Research on simultaneously removal of ciprofloxacin and levofloxacin in water by bismuth oxidide - BiOI

Hải Nguyễn Thị Thanh, Hiền Bùi Thị Thu, Anh Lê Thị Vân, Đạt Nguyễn Xuân, Hương Ngô Thị Thu, Ánh Nguyễn Thị, Long Phạm Hải, Tú Vũ Văn, Mai Vũ Thị, Doanh Vũ Văn, Hiếu Trần Đình


Using BiOI to simultaneously remove ciprofloxacin, levofloxacin antibiotic in water was studied. Factors affecting the photocatalytic ability of BiOI, such as the dosage of BiOI catalyst (0.2 - 1.5 g/L), initial concentration (1-5 mg/L), reaction temperature (25 - 50°C) was assessed. In addition, the stability of BiOI catalyst during the treatment of ciprofloxacin and levofloxacin was also studied. The results showed that the BiOI can remove ciprofloxacin and levofloxacin under visible light conditions. In an optimal condition (BiOI dosage 1 g/L; ciprofloxacin, levofloxacin initial concentration 1.5 mg/L; reaction temperature 25°C; and reaction time 60 minutes) the removal efficiency of ciprofloxacin, levofloxacin were 98.7 %, 99.1 %, respectively. The results also found that after 6 times of reuse, the removal efficiency of BiOI for ciprofloxacin, levofloxacin antibiotic were 98 % and 98.5 %. Therefore, BiOI materials can be used for the treatment of antibiotic residues in water at visible light conditions.

Full text article

Generated from XML file


[1]. T. A. Ternes et al (2002). Removal of pharmaceuticals during drinking water treatment. Environ. Sci. Technol, vol. 36, no. 17, pp. 3855 - 3863. Doi: 10.1021/es015757k.
[2]. R. Rodil, J. B. Quintana, E. Concha-Graña, P. López-Mahía, S. Muniategui-Lorenzo, and D. Prada-Rodríguez (2012). Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere, vol. 86, no. 10, pp. 1040 - 1049. Doi: 10.1016/J.CHEMOSPHERE.2011.11.053.
[3]. H. Yao, J. Lu, J. Wu, Z. Lu, P. C. Wilson, and Y. Shen (2013). Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: role of the sludge source. Water, Air, Soil Pollut., vol. 224, no. 1, p. 1370.
[4]. N. Gottschall et al (2012). Pharmaceutical and personal care products in groundwater, subsurface drainage, soil, and wheat grain, following a high single application of municipal biosolids to a field. Chemosphere, vol. 87, no. 2, pp. 194 - 203.
[5]. Y. Ma, M. Li, M. Wu, Z. Li, and X. Liu (2015). Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge. Sci. Total Environ., vol. 518, pp. 498 - 506.
[6]. M. J. Focazio et al (2008). A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States - II) Untreated drinking water sources. Sci. Total Environ., vol. 402, no. 2 - 3, pp. 201 - 216.
[7]. J.-F. Yang, G.-G. Ying, J.-L. Zhao, R. Tao, H.-C. Su, and Y.-S. Liu (2011). Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. J. Environ. Sci. Heal. Part B, vol. 46, no. 3, pp. 272 - 280.
[8]. L.-J. Zhou et al (2011). Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut., vol. 159, no. 7, pp. 1877 - 1885.
[9]. P. K. Thai et al (2018). Occurrence of antibiotic residues and antibiotic-resistant bacteria in effluents of pharmaceutical manufacturers and other sources around Hanoi, Vietnam. Sci. Total Environ., vol. 645, pp. 393 - 400. Doi: 10.1016/j.scitotenv.2018.07.126.
[10]. X. Guo et al (2017). Removal mechanisms for extremely high-level fluoroquinolone antibiotics in pharmaceutical wastewater treatment plants. Environ. Sci. Pollut. Res., vol. 24, no. 9, pp. 8769 - 8777.
[11]. O. A. Attallah, M. A. Al-Ghobashy, M. Nebsen and M. Y. Salem (2016). Adsorptive removal of fluoroquinolones from water by pectin-functionalized magnetic nanoparticles: process optimization using a spectrofluorimetric assay. ACS Sustain. Chem. Eng., Vol. 5, No. 1, pp. 133 - 145.
[12]. E. M. Van Wieren, M. D. Seymour and J. W. Peterson (2012). Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: Adsorption and breakdown. Sci. Total Environ, vol. 441, pp. 1 - 9. Doi: https://doi.org/10.1016/j.scitotenv.2012.09.067.
[13]. F. Maraschi et al (2014). TiO2-modified zeolites for fluoroquinolones removal from wastewaters and reuse after solar light regeneration. J. Environ. Chem. Eng., vol. 2, no. 4, pp. 2170 - 2176. Doi: https://doi.org/10.1016/j.jece.2014.08.009.
[14]. R. Hao, X. Xiao, X. Zuo, J. Nan and W. Zhang (2012). Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J. Hazard. Mater., vol. 209 - 210, pp. 137 - 145. Doi: 10.1016/j.jhazmat.2012.01.006.
[15]. S. Heidari, M. Haghighi and M. Shabani (2020). Sunlight-activated BiOCl/BiOBr–Bi24O31Br10 photocatalyst for the removal of pharmaceutical compounds. J. Clean. Prod., vol. 259, p. 120679. Doi: 10.1016/j.jclepro.2020.120679.
[16]. M. Anpo and M. Takeuchi (2003). The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal., vol. 216, no. 1, pp. 505 - 516.
[17]. X. Chang et al (2009). BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance. Catal. Commun., vol. 11, no. 5, pp. 460 - 464. Doi: 10.1016/j.catcom.2009.11.023.
[18]. Z. Deng, D. Chen, B. Peng and F. Tang (2008). From bulk metal Bi to two-dimensional well-crystallized BiOX (X = Cl, Br) micro- and nanostructures: Synthesis and characterization. Cryst. Growth Des., vol. 8, no. 8, pp. 2995 - 3003. Doi: 10.1021/cg800116m.
[19]. Y. Wang, K. Deng and L. Zhang (2011). Visible light photocatalysis of BiOI and its photocatalytic activity enhancement by in situ ionic liquid modification. J. Phys. Chem. C, vol. 115, no. 29, pp. 14300 - 14308. Doi: 10.1021/jp2042069.
[20]. Y. Li, J. Wang, H. Yao, L. Dang and Z. Li (2011). Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. J. Mol. Catal. A Chem, vol. 334, no. 1 - 2, pp. 116 - 122. Doi: 10.1016/j.molcata.2010.11.005.
[21]. A. Dehghan, M. H. Dehghani, R. Nabizadeh, N. Ramezanian, M. Alimohammadi and A. A. Najafpoor (2018). Adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride from aqueous solutions using 3D hierarchical mesoporous BiOI: Synthesis and characterization, process optimization, adsorption and degradation modeling. Chem. Eng. Res. Des., vol. 129, pp. 217 - 230. Doi: 10.1016/j.cherd.2017.11.003.
[22]. M. Galedari, M. Mehdipour Ghazi and S. Rashid Mirmasoomi (2019). Photocatalytic process for the tetracycline removal under visible light: Presenting a degradation model and optimization using response surface methodology (RSM). Chem. Eng. Res. Des., vol. 145, pp. 323 - 333. Doi: 10.1016/j.cherd.2019.03.031.


Hải Nguyễn Thị Thanh
Hiền Bùi Thị Thu
Anh Lê Thị Vân
Đạt Nguyễn Xuân
Hương Ngô Thị Thu
Ánh Nguyễn Thị
Long Phạm Hải
Tú Vũ Văn
Mai Vũ Thị
vtmai@hunre.edu.vn (Primary Contact)
Doanh Vũ Văn
Hiếu Trần Đình
Nguyễn Thị Thanh, H., Bùi Thị Thu, H., Lê Thị Vân, A., Nguyễn Xuân, Đạt, Ngô Thị Thu, H., Nguyễn Thị, Ánh, Phạm Hải, L., Vũ Văn, T., Vũ Thị, M., Vũ Văn, D., & Trần Đình, H. (2022). 02. Research on simultaneously removal of ciprofloxacin and levofloxacin in water by bismuth oxidide - BiOI. Science Journal of Natural Resources and Environment, (41), 14–21. Retrieved from https://tapchikhtnmt.hunre.edu.vn/index.php/tapchikhtnmt/article/view/423

Article Details

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.

01. Mangrove degradation in Tien Yen district, Quang Ninh province

Hà Hoàng Thị, Thành Nguyễn Khắc, Tính Phạm Hồng, Huyền Bùi Thanh, Hùng Trần Đăng
Abstract View : 20
Download :11