09. Recovering mangroves with wooden fence along Mekong deltaic coast: physical mechanism and SWASH model

Tùng Đào Hoàng, Lân Vũ Văn, Lan Nguyễn Thị, Huyền Vũ Thu


The Mekong deltaic coast has been suffering from erosion that negatively affects the mangrove forest for the past decades, especially in the era of sea-level rise and climate change. Building alongside traditional coastal structures, porous structures, i.e., wooden fences, become sufficient support for restoration mangroves that are already squeezed significantly. This study presents the flow and wave reduction mechanism due to the wooden fence and validation for wave-fence interaction in the SWASH model. The application of the Darcy-Forchheimer experiment delivers a proper drag coefficient that is dependent on the Reynolds number. This coefficient has high values at the laminar flow condition, Re < 400, and becomes stable as 3.8 at the high turbulence, Re > 800. The relationship between the drag coefficient and Re has finally been found, which is the base for the SWASH model's validation of wave-fence interactions. With the data from the physical model, this model shows high confidence during the comparison. The results show low errors for incoming and transmission wave heights as 3.2 % and 4.6 %, respectively.

Full text article

Generated from XML file


[1]. N. C. Duke and K. Schmitt (2015). Mangroves: unusual forests at the seas edge. Tropical forestry handbook. Pancel L., Kohl M.(ed), Springer, p. 24.
[2]. D. M. Alongi (2008). Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, vol. 76, no. 1, pp. 1 - 13.
[3]. L. K. Phan, J. S. M. van Thiel de Vries, and M. J. F. Stive (2014). Coastal mangrove squeeze in the Mekong delta. Journal of Coastal Research, pp. 233 - 243, doi: 10.2112/JCOASTRES-D-14-00049.1.
[4]. H. Cao, Z. Zhu, T. Balke, L. Zhang, and T. J. Bouma (2018). Effects of sediment disturbance regimes on Spartina seedling establishment: Implications for salt marsh creation and restoration. Limnology and Oceanography, vol. 63, no. 2, pp. 647 - 659.
[5]. T. Schoonees et al. (2019). Hard structures for coastal protection, towards greener designs. Estuaries and Coasts, vol. 42, no. 7, pp. 1709 - 1729.
[6]. J. E. Dugan et al. (2011). 8.02-Estuarine and coastal structures: environmental effects, a focus on shore and nearshore structures. Treatise on estuarine and coastal science, vol. 8, pp. 17 - 41.
[7]. Viện Khoa học Thuỷ lợi miền Nam (2020). Đánh giá thực trạng giải pháp bảo vệ bờ biển ở Đồng bằng sông Cửu Long. TP. Hồ Chí Minh.
[8]. P. N. Hong and H. T. San (1993). Mangroves of Vietnam. Vol. 7. Iucn.
[9]. O. M. Joffre and K. Schmitt (2010). Community livelihood and patterns of natural resources uses in the shrimp‐farm impacted Mekong delta. Aquaculture Research, Vol. 41, No. 12, pp. 1855 - 1866.
[10]. H.-H. Nguyen, C. McAlpine, D. Pullar, K. Johansen, and N. C. Duke (2013). The relationship of spatial-temporal changes in fringe mangrove extent and adjacent land-use: Case study of Kien Giang coast, Vietnam. Ocean & coastal management, Vol. 76, pp. 12 - 22.
[11]. T. Dao, M. J. F. Stive, B. Hofland, and T. Mai (2018). Wave damping due to wooden fences along mangrove coasts. Journal of coastal research, Vol. 34, No. 6, pp. 1317 - 1327, doi: 10.2112/JCOASTRES-D-18-00015.1.
[12]. H. T. Dao, B. Hofland, M. J. F. Stive, and T. Mai (2020). Experimental assessment of the flow resistance of coastal wooden fences. Water, Vol. 12, No. 7, p. 1910.
[13]. H. T. Dao, B. Hofland, T. Suzuki, M. J. F. Stive, T. Mai, and L. X. Tuan (2021). Numerical and small-scale physical modelling of wave transmission by wooden fences.
[14]. T. Albers and N. von Lieberman (2011). Current and erosion modelling survey, Deutsche gesellschaft für internationale zusammenarbeit (GiZ) GmbH management of natural resources in the coastal zone of Soc Trang province.
[15]. K. Schmitt, T. Albers, T. T. Pham, and S. C. Dinh (2013). Site-specific and integrated adaptation to climate change in the coastal mangrove zone of Soc Trang province, Vietnam. Journal of Coastal Conservation, Vol. 17, No. 3, pp. 545 - 558.
[16]. K. Schmitt and T. Albers (2014). Area coastal protection and the use of bamboo breakwaters in the Mekong delta, in coastal disasters and climate change in Vietnam. Elsevier, pp. 107 - 132.
[17]. C. van Cuong, S. Brown, H. H. To, and M. Hockings (2015). Using melaleuca fences as soft coastal engineering for mangrove restoration in Kien Giang, Vietnam. Ecological Engineering, Vol. 81, pp. 256 - 265.
[18]. N. Anh, T. Mai, and C. Mai (2018). Wave reduction by a bamboo fence.
[19]. T. Mai, T. Dao, A. Ngo, and C. Mai (2019). Porosity effects on wave transmission through a bamboo fence. In International Conference on Asian and Pacific Coasts, pp. 1413 - 1418.
[20]. M. C. Trí, N. V. Vương, H. Đ. Đạt, N. T. T. Anh, and Đ. H. Tùng (2019). Mô hình tính toán mô phỏng sóng truyền qua hàng rào tre. Tạp chí Khoa học Công nghệ Xây dựng (KHCNXD)-ĐHXD, Vol. 13, No. 1V, pp. 75 - 83.
[21]. C. Mai Van, A. Ngo, T. Mai, and H. T. Dao (2021). Bamboo fences as a nature-based measure for coastal wetland protection in Vietnam. Frontiers in Marine Science, Vol. 8, p. 1430. Available:https://www.frontiersin.org/article/10.3389/fmars.2021.756597.
[22]. P. Novák and J. Čábelka (1981). Models in hydraulic engineering: Physical principles and design applications. Vol. 4. Pitman Publishing.
[23]. V. Heller (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, Vol. 49, No. 3, pp. 293 - 306.
[24]. J. R. Morison, J. W. Johnson, and S. A. Schaaf (1950). The force exerted by surface waves on piles. Journal of Petroleum Technology, vol. 2, no. 05, pp. 149 - 154.
[25]. H. M. Nepf (1999). Drag, turbulence and diffusion in flow through emergent vegetation. Water resources research, vol. 35, no. 2, pp. 479 - 489.
[26]. B. M. Sumer (2006). Hydrodynamics around cylindrical strucures. Vol. 26. World scientific.
[27]. P. Forchheimer (1901). Wasserbewegung durch boden. Z. Ver. Deutsch, Ing., vol. 45, pp. 1782 - 1788.
[28]. R. A. Dalrymple, J. T. Kirby, and P. A. Hwang (1984). Wave diffraction due to areas of energy dissipation. Journal of Waterway, Port, Coastal, and Ocean Engineering, vol. 110, no. 1, pp. 67 - 79.
[29]. B. Jensen, N. G. Jacobsen, and E. D. Christensen (2014). Investigations on the porous media equations and resistance coefficients for coastal structures. Coastal Engineering, vol. 84, pp. 56 - 72.
[30]. J. A. Zelt and J. E. Skjelbreia (1993). Estimating incident and reflected wave fields using an arbitrary number of wave gauges. In Coastal Engineering 1992, 1993, pp. 777 - 789.
[31]. M. Zijlema and G. S. Stelling (2005). Further experiences with computing non‐hydrostatic free‐surface flows involving water waves. International journal for numerical methods in fluids, vol. 48, no. 2, pp. 169 - 197.
[32]. M. Zijlema, G. Stelling, and P. Smit (2011). SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering, vol. 58, no. 10, pp. 992 - 1012.
[33]. T. Suzuki, M. Zijlema, B. Burger, M. C. Meijer, and S. Narayan (2012). Wave dissipation by vegetation with layer schematization in SWAN. Coastal Engineering, vol. 59, no. 1, pp. 64 - 71.
[34]. D. P. Rijnsdorp, P. B. Smit, and M. Zijlema (2012). Non-hydrostatic modelling of infragravity waves using SWASH. Coastal Engineering Proceedings, vol. 1, no. 33, p. 27.
[35]. P. Smit, M. Zijlema, and G. Stelling (2013). Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coastal Engineering, vol. 76, pp. 1 - 16.
[36]. T. Suzuki, Z. Hu, K. Kumada, L. K. Phan, and M. Zijlema (2019). Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields. Coastal Engineering.
[37]. F. J. Mendez and I. J. Losada (2004). An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coastal ß Engineering, vol. 51, no. 2, pp. 103 - 118.
[38]. S. Ergun (1952). Fluid flow through packed columns. Chem. Eng. Prog., vol. 48, pp. 89 - 94.
[39]. M. R. A. van Gent (1996). Wave interaction with permeable coastal structures. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, vol. 6, no. 33, p. 277A.
[40]. G. H. Keulegan (1958). Forces on cylinders and plates in an oscillating fluid. J. Research of the National Bureau of Standards Research Paper, vol. 2857, pp. 423 - 440.


Tùng Đào Hoàng
dhtung@hunre.edu.vn (Primary Contact)
Lân Vũ Văn
Lan Nguyễn Thị
Huyền Vũ Thu
Đào Hoàng, T., Vũ Văn, L., Nguyễn Thị, L., & Vũ Thu, H. (2022). 09. Recovering mangroves with wooden fence along Mekong deltaic coast: physical mechanism and SWASH model. Science Journal of Natural Resources and Environment, (40), 84–96. Retrieved from https://tapchikhtnmt.hunre.edu.vn/index.php/tapchikhtnmt/article/view/398

Article Details

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

05. Assessment of drought level by using the indicator of flow deficiency in the Mekong delta

Thiện Trần Đức, Bính Đỗ Thị, Anh Nguyễn Phương
Abstract View : 38
Download :10

06. Research build map for risk of salt intrusion in the Ma River delta in the context of climate change

Minh Hoàng Thị Nguyệt, Thường Lê Thị, Vũ Nguyễn Trọng
Abstract View : 27
Download :10

11. Methods for optimizing parameters of ImechTV2 distributed hydrological model

Hằng Nguyễn Thị, Kiên Nguyễn Chính, Hương Dương Thị Thanh
Abstract View : 16
Download :3