07. AN EVALUATION OF PRECIPITATION VARIABILITY OVER THE VIETNAMESE MEKONG RIVER DELTA BASED ON CMIP5 MULTI-MODEL ENSEMBLE SIMULATIONS AND 21ST CENTURY PROJECTIONS

Thien Le Van

Giới thiệu

Vietnamese Mekong River Delta (VMRD) is one of the most bio diverse rivers in the world and is greatly affected by distinct wet and dry seasons. It is also the largest agriculture and aquaculture production region of Vietnam. Precipitation variability has major economic, social and environmental impacts across the globe in general and on VMRD in particular. The historical precipitation variability (1911 - 2005) based on 26 global circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive over the 20th century relative to observational data and two future emission scenarios used (representative concentration pathways (RCP) 8.5 and RCP 4.5 referred to the twenty-first century projections of precipitation are evaluated. The results showed that CMIP5 models can reproduce the spatial pattern of precipitation better in winter than in both summer and entire year over the VMRD during the 20th century. However, the models overestimate the magnitude of seasonal and annual precipitation in most regions of the VMRD and underestimate summer precipitation in some parts of Ca Mau province and eastern south of Vietnam. Throughout the 20th century, both the observations and models show a decreasing trend in precipitation in winter over entire the VMRD and some parts of western VMRD. There is poor agreement in annual and summer precipitation trends in eastern VMRD. In general, multi-model means can capture the amplitude of observed multidecadal precipitation variability better in winter than in summer and entire year. In the 21st century, annual and summer precipitation generally increases while winter precipitation decreases over the VMRD under two scenarios. Both the RCP 8.5 and RCP4.5 scenarios show precipitation trend at a rate of about +24 mm/decade by the end of the century.

Toàn văn bài báo

Được tạo từ tệp XML

Trích dẫn

[1]. Intergovernmental Panel on Climate Change (IPCC) (2013). Climate Change 2013: The physical science basis. In the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 161 - 162, Cambridge Univ. Press, Cambridge, U. K., and New York.
[2]. Vörösmarty, C. J., P. Green, J. Salisbury, and R. B. Lammers (2000). Global water resources: Vulnerability from climate change and population growth. Science, 289 (5477), 284 - 288, doi:10.1126/science.289.5477.284.
[3]. Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl (2007). Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim., 20(8), 1419 - 1444, doi:10.1175/JCLI4066.1.
[4]. Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012). An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485 - 498.
[5]. Huang, D.‐Q., J. Zhu, Y.‐C. Zhang, and A.‐N. Huang (2013). Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J. Geophys. Res. Atmos., 118, 9035 - 9047, doi:10.1002/jgrd.50695.
[6]. Sperber, K. R., H. Annamalai, I. S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou (2013). The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn., 41 (9 - 10), 2711 - 2744, doi:10.1007/s00382‐012‐1607‐6.
[7]. Wei, K., T. Xu, Z. Du, H. Gong, and B. Xie (2013). How well do the current state‐of‐the‐art CMIP5 models characterise the climatology of the East Asian winter monsoon?, Clim. Dyn., 1 - 15, doi:10.1007/s00382‐013‐1929‐z.
[8]. N.D. Mau, et al. (2016). Changes in Rainfall During the Summer Monsoon over Vietnam Projected by PRECIS Model. VNU Journal of Science: Earth and Environmental Sciences, [S.l.], v. 32, n. 3S, sep. 2016. ISSN 2588 - 1094.
[9]. VAN KHIEM, Mai (2018). Contructing Climate Change Scenarios for Ho Chi Minh City. VNU Journal of Science: Earth and Environmental Sciences, [S.l.], v. 34, n. 1S, dec. 2018. ISSN 2588 - 1094.
[10]. Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj (2011). RCP 8.5 - A scenario of comparatively high greenhouse gas emissions. Clim. Change, 109 (1 - 2), 33 - 57, doi:10.1007/s10584‐011‐0149‐y.
[11]. Thomson, A., et al. (2011). RCP 4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change, 109 (1 - 2), 77 - 94, doi:10.1007/s10584‐011‐0151‐4.
[12]. Rudolf, B., and U. Schneider (2005). Calculation of gridded precipitation data for the global land‐surface using in‐situ gauge observations. Paper presented at Proceedings of the 2nd Workshop of the International Precipitation Working Group IPWG, Monterey, October 2004.
[13]. Schneider, U., A. Becker, P. Finger, A. Meyer‐Christoffer, M. Ziese, and B. Rudolf (2013). GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 1 - 26, doi:10.1007/s00704‐013‐0860‐x.
[14]. Alkama, R., L. Marchand, A. Ribes, and B. Decharme (2013). Detection of global runoff changes: Results from observations and CMIP5 experiments. Hydrol. Earth Syst. Sci., 17(7), 2967 - 2979, doi:10.5194/hess‐17‐2967‐2013.
[15]. Hsu, P.‐C., T. Li, H. Murakami, and A. Kitoh (2013). Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res. Atmos., 118, 1247 - 1260, doi:10.1002/jgrd.50145.
[16]. Huang, D.‐Q., J. Zhu, Y.‐C. Zhang, and A.‐N. Huang (2013). Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J. Geophys. Res. Atmos., 118, 9035 - 9047, doi:10.1002/jgrd.50695.
[17]. Qu, X., G. Huang, and W. Zhou (2013). Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations. Theor. Appl. Climatol., 1 - 9, doi:10.1007/s00704‐013‐0995‐9.
[18]. Wang, L., and W. Chen (2013). A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol., doi:10.1002/joc.3822.
[19]. Chang, C.‐P. (2004). East Asian Monsoon. World Scientific Press, Singapore.
[20]. Huang, R. H., J. L. Chen, L. Wang, and Z. D. Lin (2012). Characteristics, processes, and causes of the spatio‐temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29 (5), 910 - 942, doi:10.1007/s00376‐012‐2015‐x.
[21]. Gong, H., L. Wang, W. Chen, R. Wu, K. Wei, and X. Cui (2013). The climatology and interannual variability of the East Asian winter monsoon in CMIP5 models. J. Clim., 27 (4), 1659 - 1678, doi:10.1175/JCLI‐D‐13‐00039.1.
[22]. Song, F., T. Zhou, and Y. Qian (2014). Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., doi:10.1002/2013GL058705.
[23]. Song, F., and T. Zhou (2014). Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean - Western Pacific Anticyclone Teleconnection. J. Clim., 27(4), 1679 - 1697, doi:10.1175/JCLI‐D‐13‐00248.1.
[24]. Chen, L., and O. W. Frauenfeld (2014). A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos., 119, 5767 - 5786, https://doi.org/10.1002/2013JD021190.

Các tác giả

Thien Le Van
lvthien@hunre.edu.vn (Liên hệ chính)
Le Van, T. (2022). 07. AN EVALUATION OF PRECIPITATION VARIABILITY OVER THE VIETNAMESE MEKONG RIVER DELTA BASED ON CMIP5 MULTI-MODEL ENSEMBLE SIMULATIONS AND 21ST CENTURY PROJECTIONS. Tạp Chí Khoa học Tài Nguyên Và Môi trường, (39), 69–81. Truy vấn từ https://tapchikhtnmt.hunre.edu.vn/index.php/tapchikhtnmt/article/view/381
##submission.license.notAvailable##

Chi tiết bài viết

Các bài báo tương tự

<< < 1 2 3 4 5 6 > >> 

Bạn cũng có thể bắt đầu một tìm kiếm tương tự nâng cao cho bài báo này.

05. ĐÁNH GIÁ MỨC ĐỘ HẠN HÁN BẰNG CHỈ SỐ THIẾU HỤT DÒNG CHẢY VÙNG HẠ LƯU ĐỒNG BẰNG SÔNG CỬU LONG

Thiện Trần Đức, Bính Đỗ Thị, Anh Nguyễn Phương
Abstract View : 250
Download :62

06. NGHIÊN CỨU XÂY DỰNG BẢN ĐỒ NGUY CƠ XÂM NHẬP MẶN VÙNG HẠ LƯU SÔNG MÃ TRONG ĐIỀU KIỆN BIẾN ĐỔI KHÍ HẬU

Minh Hoàng Thị Nguyệt, Thường Lê Thị, Vũ Nguyễn Trọng
Abstract View : 195
Download :52

09. NGHIÊN CỨU DỰ BÁO SƯƠNG MÙ VÙNG BIỂN QUẢNG NINH - HẢI PHÒNG

Lành Nguyễn Viết, Đoàn Phan Văn
Abstract View : 59
Download :21