07. Research and application of artificial neural networks to forecast and correct water level at rivers unaffected by tides

Dương Trần Cảnh

Abstract

Data of water flow and water level are very important in socio-economic development and national security. However, such data may be insufficient or discontinuously collected over a long period of time; thus, in some cases, data estimation is required. This paper proposes to use Multi Layer Perceptron - MLP neural network to model and calculate, estimate water level of rivers unaffected by tides with an allowed error. Based on actual monitoring data of a river's water level, MLP neural network was used to forecast river water level after one day and after ten days. Forecast results were compared with actual observed results in order to evaluate errors. Using MLP neural network to model and calculate, estimated river water levels were acceptable with the allowed error. Using this forecasting method, technicians should base on specific monitoring data and forecasting needs to adjust input and output parameters of the MLP network appropriately. Thus, this method could be applied to forecast river water level data according to actual requirements and support for the correction of hydrological data.

Full text article

Generated from XML file

References

[1]. Boger B, Guyon I (1997). Knowledge extraction from artifi cial neural network models. IEEE Systems, Man, and Cybernetics Conference.
[2]. Cao Thang (2007). Intructions for using Spice-MLP software. Soft Intelligence Laboratory, Ritsumeikan University, Japan.
[3]. Changhyun Choi, Jungwook Kim, Heechan Han, Daegun Han, Hung Soo Kim (2019). Development of Water Level Prediction Models Using Machine Learning in Wetlands: A Case Study of Upo Wetland in South Korea. Institute of Water Resources System, Inha University, Michuhol-Gu, Incheon, Korea. Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA.
[4]. Nguyễn Phùng Quang (2008). Matlab & Simulink dành cho kỹ sư điều khiển tự động. Nhà xuất bản Khoa học và Kỹ thuật.
[5]. Trần Hoài Linh (2019). Mạng nơ ron và ứng dụng trong xử lý tín hiệu số. Nhà xuất bản Bách Khoa, Hà Nội.
[6]. Nguyễn Chính Kiên (2020). Nghiên cứu xây dựng mô hình thủy văn thông số tập trung trong dự báo lũ cho các lưu vực sông ở Việt Nam. Đề tài cơ sở cấp Viện Cơ học - Viện Hàn lâm Khoa học và Công nghệ Việt Nam.
[7]. Trần Cảnh Dương (2020). Ước lượng thông số tài nguyên và môi trường theo thời gian đối với các địa điểm có dữ liệu tương quan bằng cách ứng dụng mạng nơ ron để xử lý tín hiệu số. Tạp chí Khoa học Tài nguyên và Môi trường - số 30.

Authors

Dương Trần Cảnh
tcduong@hunre.edu.vn (Primary Contact)
Trần Cảnh, D. (2021). 07. Research and application of artificial neural networks to forecast and correct water level at rivers unaffected by tides. Science Journal of Natural Resources and Environment, (36), 64–74. Retrieved from https://tapchikhtnmt.hunre.edu.vn/index.php/tapchikhtnmt/article/view/330
##submission.license.notAvailable##

Article Details

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.

09. Application of IoT into managing electric devices in schools

Loan Nguyễn Thị Hồng, Thạch Phạm Ngọc
Abstract View : 20
Download :5