Science on Natural Resources and Environment 49 (2023) 83-90

Science on Natural Resources and Environment
Journal homepage: tapchikhtnmt.hunre.edu.vn

APPLICATION DEEP LEARNING YOLOv8 MODEL FOR
OBJECT DETECTION

Thi Thanh Thuy Pham®, Thi Thu Ha Le
Hanoi University of Natural Resource and Environment, Vietnam

Received 02 November 2023; Accepted 20 December 2023
Abstract

Detection of objects is a crucial aspect within the realm of computer vision,
encompassing the identification and precise localization of objects within images or
videos. This task holds significant importance in various applications, including but
not limited to self-driving cars, robotics, and video surveillance systems. Throughout
the years, numerous techniques and algorithms have been devised to detect objects
within images and determine their spatial positions. The optimal performance in
executing these tasks is achieved through the utilization of convolutional neural
networks. Among the prominent neural networks designed for this purpose, YOLO
stands out. Introduced in 2015 by Joseph Redmon, Santosh Divvala, Ross Girshick,
and Ali Farhadi in their renowned research paper ““You Only Look Once: Unified, Real-
Time Object Detection” YOLO has become widely adopted. Since its inception, YOLO
has undergone several iterations, with newer versions extending their capabilities
beyond object detection. The latest release in this series is YOLOVS. In this article,
the authors introduce a Deep Learning approach for object detection employing the
YOLOvS model. The testing outcomes reveal that the model attains a peak accuracy of
95 % for large and well-defined objects, whereas objects that are obscured and small
in size exhibit an accuracy of 27.5 %.

Keywords: Foreign Object Detection; Deep Learning; YOLOVS.
“Corresponding author. Email: ptttthuy.tdbd@hunre.edu.vn

For instance, research focused
on vehicle classification algorithms

1. Introduction

With the development of computer
technology and artificial intelligence,
image recognition technology s
increasingly developed and applied. With
the continuous advancement of computer
technology and artificial intelligence,
there has been notable progress in the
development and application of image
recognition technology. Recent case
studies, both international and domestic,
highlight this trend.

using computer vision underscores
the importance of identifying and
categorizing vehicles, particularly in
urban planning and traffic management, a
topic gaining increasing global attention.
This article delves into the research
and development of a novel algorithm
designed to identify and classify
vehicles in real-time video streams. The
proposed algorithm harnesses a neural

83

network implemented with the YOLO
and Sort algorithms, specifically tailored
for object-tracking applications. The
research involved testing live video
feeds from surveillance cameras. The
results of the tests showcase the proposed
algorithm’s stability and effectiveness,
achieving a high accuracy rate of
approximately 95 % for cars and over
80 % for motorcycles. These outcomes
are remarkably positive when compared
to alternative methods, emphasizing
the algorithm’s potential for practical
applications in diverse scenarios [1].

In the realm of medicine, the
detection of diseases through image
diagnosis holds paramount significance.
Therefore, the application and
advancement of an artificial intelligence
algorithm for detecting reflux esophagitis
on endoscopic image sets play a crucial
role in assessing the accuracy of Al
algorithms in identifying and evaluating
the severity of these lesions. The
research methodology employed for this
purpose is cross-sectional description.
The algorithm was rigorously tested on
a set of 1,000 still images with varying
lighting conditions, and its performance
was assessed by comparing the standard
segmentation provided by experts. The
evaluation of accuracy involved metrics
such as sensitivity, specificity, positive
predictive value, and negative predictive
value. Additionally, the comparison
of proportions and examination of
associations were employed to scrutinize
factors contributing to omission and
misidentification rates. The obtained
results revealed an accuracy rate of
81.7 %. Notably, the study found a
correlation between the number and size
of lesions and the omission rate, while

84

the presence of accompanying damage
and cleanliness were linked to the rate
of misidentification. In conclusion,
the YOLOvS algorithm demonstrated
commendable accuracy, indicating its
potential for further development in areas
such as co-checking with endoscopists
during endoscopy, post-checking after
endoscopy, and participation in medical
training leveraging big data [2].

In the aviation industry, a deep
learning solution is applied to detect
and provide early warnings for Foreign
Object Debris (FOD) on runways, aiming
to minimize risks during aircraft takeoff
and landing. The proposed solution by
the authors utilizes PTZ cameras to
capture wide-angle images, preprocesses
the images, and then employs deep
learning processing through the YOLOv4
algorithm. The test results demonstrate
that the model can operate at a speed
of 45 frames per second, achieving an
accuracy of 98 % with an Intel Core i7
configuration and RTX 2080 GPU [3].

Some studies around the world
include: Performance analysis of deep
learning YOLO models for South Asian
regional vehicle recognition [4], Real-time
factory smoke detection based on two-stage
relation-guided algorithm [5], Wildfire
and smoke detection using staged YOLO
model and ensemble CNN [6].

Utilizing both international and
domestic research, the YOLO model
facilitates rapid detection and timely
response to objects within images
or videos. The most recent iteration,
YOLOVS, was unveiled in January
2023. Consequently, this study employs
YOLOV8 to identify objects in images
and assess the model’s accuracy.

2. Description of data

2.1. Dataset acquisition

The accuracy of the deep learning
model was predominantly influenced by
the dataset utilized during the training
and validation phases. We compiled a
collection of images from diverse open-
access repositories, including “Open
Images Dataset v7 and Extensions” [7]
and Roboflow [8]. These sources provided

images portraying various conditions
such as different shapes, colors, sizes, and
environments (both indoor and outdoor).

For real-world challenges, the
database needs to be considerably larger.
To effectively train a robust model, it
i1s essential to have hundreds or even
thousands of annotated images. The
image dataset is illustrated in Table 1,
comprising a total of 7,198 images.

Table 1. Image sources for object detection dataset

Dataset Image Size Number of images
Many different sizes
zllzeréi?gifiesnDataset Vi 448 X 640; 660 x 371; 6,702
) 1024 x 576; 600 x 400
Roboflow 640 x 640 496
Total Images 7,198

2.2. Data preprocessing

On Google Drive, establish a “data”
folder and generate subfolders named
“train” and ‘“validation” subsequently,

distribute the collected images into these
two subfolders, allocating 80 % to the
“train” subfolder and 20 % to the “val”
subfolder as shown in Table 2.

Table 2. Distribution of training and validation images in fire dataset

Dataset name Size Number of images Training set Validation set
Data 640 x 640 7,198 5,759 1,439
Then we export the dataset as 3. YOLO models
YOLOV$ Pytorf:h format anc'l it generates You Only Look Once (YOLO)
an API link which we used in our model .
directly proposes using an end-to-end neural
' network that makes predictions of
Next, the research team enhances the) .
bounding boxes and class probabilities

image quality and utilizes Make-Sense to
annotate objects in the images [9]. After
adding and annotating all images, the
dataset is ready. The final folder structure
can look like Figure 1.
~ (B data
~ B train
» @ images
» [lables
~ @ val
» @ images
» [lables

Figure 1: Dataset structure

all at once. It differs from the approach

taken by previous object detection
algorithms, which repurposed classifiers
to perform detection. Numerous iterations
of the original YOLO model have been
introduced since its initial release in
2015, each iteration building upon and
enhancing its predecessor. The following
timeline highlights the evolution of

YOLO over the past few years.

85

nﬁm YOLO-8
& &)

2016 2018 2020
@ L
2015 2017 2019 2021 2022 2023
YOLO-v3 YOLO-v5

Figure 2: YOLO timeline [10]
The YOLO algorithm processes an input image by employing a straightforward
deep convolutional neural network to identify objects within the image. The diagram
below illustrates the structure of the convolutional neural network model that serves

as the foundation for YOLO.

:[“'—‘
n

Aan

T oz

Conv. Loyer Conv. Laysr Conv. Layers Conv. Laysrs Conv. Layars Cony, Layens Conn. Layar Conn. Loyer
TuTnbds2 Ixdx192 Ixlx128 Txlx256 7 .4 Ix1x512 3 Jadx1024
Maxpool Layer Maxpool Layer Ixda256 Indn512 JIx3x1024 IxIx1024
2x242 2x242 Tx1x256 Ix1x512 Ix3x1024

In3x512

ImIx1024

Indx 102442

Manpool Loyer Moxpool Loyer

x4

a2

The Architecture, Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 = 224 input image) and then double the resolution for detection.

Figure 3: CNN Network Architecture in YOLO [11]

Ultralytics has officially announced
the upcoming YOLOvVS, which is
anticipated to introduce enhanced
features and performance compared to
its earlier versions. YOLOVS introduces
a novel API designed to streamline
both training and inference processes

55

on both CPU and GPU devices, while
also ensuring compatibility with
previous YOLO versions. Although a
comprehensive scientific paper detailing
the model’s architecture and performance
is still in development, the release is
eagerly awaited by developers.

P 5]
(&) (=]
1 !

COCO mAP)™ %
B
(=]

351 —e— YOLOVS
Small YOLOVT
30 4 ‘& YOLOVB-2 0
YOLOv5-7.0
0 20 40 60 80

Parameters (M)

55

e [}
[} (=]
f L

COCO mAP)™
e
o

351 == YOLOv8
E YOLOvT
30 A &ter YOLOVE-2.0
YOLOvS-7.0
1.0 1.5 2.0 2.5 3.0 3.5

Latency A100 TensorRT FP16 (ms/img)

Figure 4: Compare different YOLO versions [12]

86

As we can observe from the chart,
YOLOvVS has more parameters than its
predecessors like YOLOVS but fewer
parameters than YOLOV6. It provides
approximately a 33 % increase in mean
average precision (mAP) for models of
size “n” and generally higher mAP.

From the second chart, it is evident
that YOLOVS has faster inference times
compared to all other YOLO versions.
In YOLOvV8, we encounter various
model sizes such as yolov8-nano, -small,
-medium, -large, and -extra-large.

. val Speed Speed
Model SIZE mAP CPUONNX A100 TensorkT ~ Params FLOPs
(pixels) 50-95 (M) (B)
(ms) (ms)

YOLOv8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 449 128.4 1.20 11.2 28.6
YOLOVBm 640 50.2 234.7 1.83 25.9 78.9
YOLOvSI 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 539 479.1 3.53 68.2

257.8

Figure 5: Size comparison of YOLO models [12]

The model size correlates linearly
with mean average precision (mAP) and
inversely with inference time. Larger
models take more time for accurate object
detection with higher mAP. Smaller
models have faster inference times but
relatively lower mAP. Larger models
perform better when there is limited
data. Smaller models are more efficient
in scenarios with limited space (edge
situations).

This research aims to enhance
the object detection capabilities of
images using the YOLOvVS8 architecture.
Our system, illustrated in Figure 6, is
meticulously crafted from data collection
to model construction, as explained in
detail below. Following data collection,
we conducted preprocessing, dividing the
data into training (80 %) and validation
(20 %) sets. These images were then fed
into the YOLOv8 model for simultaneous
training and validation, utilizing the
YOLOV8 model variant.

Images Datasat

Data Split

4
[Validation [Training]
J

]

YOLOvVEm

Validation and retrain

Model
Output

Figure 6: Implementation process

Each training cycle consists of two
phases: a training phase and a validation
phase:

* Trainning phase

87

During the training phase, the

training method does the following:

+ Extracts the random batch of
images from the training dataset (the
number of images in the batch can be
specified using the batch option).

+ Passes these images through the
model and receives the resulting bounding
boxes of all detected objects and their
classes.

+ Passes the result to the loss function
that’s used to compare the received
output with correct result from annotation
files for these images. The loss function
calculates the amount of error.

+ The result of the loss function
is passed to the optimizer to adjust the
model weights based on the amount of
error in the correct direction. This reduces
the errors in the next cycle. By default,
the SGD (Stochastic Gradient Descent)
optimizer is used.

* Validation phase

During the validation phase, train
does the following:

+ Extracts the images from the
validation dataset.

+ Passes them through the model and
receives the detected bounding boxes for
these images.

+ Compares the received result
with true values for these images from
annotation text files.

+ Calculates the precision of the
model based on the difference between
actual and expected results.

4. Results

The progress and results of each
phase for each epoch are displayed on
the screen. This way you can see how the
model learns and improves from epoch to
epoch. When you run the train code, you
will see a similar output to the following
during the training loop:

& Untitled24.ipynb
pyn B Comment
File Edit View Insert Runtime Tools Help Allchanges saved
b M x + Code + Text
a optimizer: SGD(1r=0.01) with parameter groups 77 weight(decay=0.0}, 84 weight(decay~0.0005), 83 bias
m [?. m Q train: Scanning /content/drive/MyDrive/signs/train/labels.cache... 1602 images, 0 backgrounds, 0 COrrupwe—awy
2 albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit={3, 7)), ToGray(p=0.01), CLAHI
- val: Scanning /content/drive/Mybrive/signs/valid/labels.cache... 461 images, 0 backgrounds, D corrupt: 100%[]
- Plotting labels to runs/detect/train/labels.jpg...
nve Image sizes 640 train, 640 val
i runs Uging 2 dataloader workers
§ Logging results to runs/detect/train
> 1 detact Starting training for 5 epachs...
~ [train
+ mm weights Epoch GPU_mem box_loss «cls loss dfl loss Instances Size
175 £.956 1.03 3,508 1,339 6401 100% | S| 101/101 [03:
ass mages Instances Box (P P! m -95)z 4| | 1t
. args yaml cl I R MAPS0 mAP50-95 1004 | 1t
B events.outtfevents 16821 all 461 504 0.534 6.59 0.547 0.425
!
‘ Isbainiba Epoch GPU_mem box_loss ecle_loss dfl_leas Instances Size
[labels_correlogram jog 215 .06 0.8454 1,643 1.156 640: 100% || 101/101 (01:
B results.csv Class Images Instances Box (P R mAPS0 mAP50-95): 1004 |G 1
all 481 504 0.694 0.674 0.775 0.621
B ain_batch0.jpg
B train_batehl jpg Epoch GPU_mem box_loss «cls loss dfl loss Instances Size
B vain_batch2 jpg /5 7.056 0.837 1.239 1.131 1 640: 100% | | 101/101 [01:
Class Images Instances Box (P R mAPSO mAP50-35): 100% | 1
i sample_dats all 461 504 0.866 0.754 0.841 0.664
B dateyom!
Epoch GPU_mem box loss <cls loss dfl loss Instances Size

K volovfim nt

Figure 7: Train the YOLOvS8 model

After training, the training results
will be saved in the runs/detect/train
folder. The results of each epoch’s
training are saved in the results.csv file
and the weights of the Yolov8 model will
be saved in the weights folder.

38

The number of objects detected in
an image includes: 6 persons, 3 cars, 5
motorcycles, 1 backpack.

Object type:

Coordinate:

Probability:

Object type:

Coordinate:

Probability:

Object type:

Coordinate:

Probability:

Object type:

Coordinate:

Probability:

Object type:

Coerdinate:

Probability:

Figure 8: Detected objects in the image

[596, 328, 799, 466] Coordinate:

[217, 341, 384, 478] Coordinate:

[348, 349, 446, 417] Coordinate:

[261, 3e9, 324, 438] Coordinate:

[116, 358, 218, 43@] Coordinate:

car Object type:
©.94977343@82428 Probability:
motorcycle Object type:
0.909209012985229 Probability:
car Object type:
0.893734991550446 Probability:
person Object type:
©.854530692100525 Probability:
motorcycle Object type:

©.837235391139984 Probability:

car Object type: person
[59, 343, 96, 369] Coordinate: [188, 326, 223, 383]
9.828676844940948 Probability: ©.534940421581268

motorcycle Object type: backpack

[0, 354, 56, 410] Coordinate: [249, 340, 269, 388]
©.774635314941406 Probability: ©.485219240188599
person Object type: motorcycle

[@, 324, 48, 395] Coordinate: [111, 351, 135, 378]

©.759477913379669 Probability: ©.366378962993622
person Object type: person

[145, 314, 185, 421] Coordinate: [©, 331, 2@, 395]
9.704396784305573 Probability: ©.353683233261108
person Object type: motorcycle

[211, 324, 24e, 373] Coordinate: [191, 360, 241, 42@]
@.564184795455933 Probability: ©.275619566440582

’—ﬁ‘__,,wcarzfgg’A’
- .—4121';;i.':=;7

Figure 10: Detection results for different types of objects

&9

5. Conclusion

Effective implementation of
convolutional neural networks can
significantly improve object detection
performance. The YOLOvS model is
capable of detecting many different
objects in a quick time. However,
achieving high-accuracy results requires
the labeling of objects to be accurate and
complete. Besides, the size and clarity
of the object in the image also greatly
affect the results of object detection and
classification. In the field of resource and
environmental management, YOLOVS
can be employed to detect phenomena
such as forest fires, oil spills in the sea,
or landslides. This issue will be addressed
in upcoming research conducted by the
study group.

REFERENCES

[1]. Nguyen Manh Cuong, Vu Van Ruc,
Doan Ngoc Au, Do Cong Danh, Hoang Anh
Sang, Vu Tam Long (2021). Research on
vehicle classification algorithms based on
computer vision. Research Gate.

[2]. Bui Tri Thue, Lam Ngoc Hoa, Vu
Thi Ly, Dao Viet Hang (2023). Application
of artificial intelligence in detecting reflux
esophagitis on endoscopy images. Journal of
Medical Research, Hanoi Medical University
170 (9), 114-151.

[3]. Minar Mahmud Rafi, Siddharth
Chakma, Asif Mahmud, Raj Xavier Rozario,
Rukon Uddin Munna, Md. Abrar Abedin
Wohra, Rakibul Haque Joy, Khan Raqib
Mahmud, Bijan Paul (2022). Performance
analysis of deep learning YOLO models for
South Asian regional vehicle recognition.
(IJACSA) International Journal of Advanced
Computer Science and Applications, Vol. 13,
No. 9, 864-873.

90

[5]. Zhenyu Wang, Duokun Yin, and
Senrong Ji (2022). Real-time factory smoke
detection based on two-stage relation-guided
algorithm. Scientific Reports 12:1786. Nature
portolio. https://doi.org/10.1038/s41598-022-
05523-1.

[6]. Chayma Bahhar, Amel Ksibi, Manel
Ayadi, Mona M. Jamjoom, Zahid Ullah, Ben
Othman Soufiene and Hedi Sakli (2023).
Wildfire and smoke detection using staged
YOLO model and ensemble CNN. Electronics
2023, 12, 228. https://doi.org/10.3390/
electronics12010228.

[7]. Open Images Dataset v7 and
Extensions (2023). [online] Available at:
[Accessed 1 December 2023]. Available at:
https://storage.googleapis.com/openimages/
web/index.html.

[8]. Roboflow (2023). [online]
[Accessed 1 December 2023]. Available at:
https://universe.roboflow.com/search?q=
model%253 Ayolov8&p=3.

[9]. Makesence (2023). [online]
Available at: https://www.makesense.ai
(Accessed 1 December 2023).

[10]. Research Gate (2023). Timeline of
YouOnlyLookOnce(YOLO)variants.[online].
Available at: https://www.researchgate.net/
figure/Timeline-of-You-Only-Look-Once-
YOLO-variants_figl 369379818.

[11]. Tra Van Dong, Nguyen Thu Nguyet
Minh and Huynh Chi Nhan (2020). Compare
SSD algorithm and YOLO in object detection.
Van Lang University Journal of Scientific.
Code TCKH22-10-2020.

[12]. Ultralytics YOLOvV8 (2023).
[online] [Accessed 2 December 2023].
Available at: https://github.com/ultralytics/
ultralytics.

